Improving Neutrino Energy Reconstruction with Recurrent Neural Networks at NOvA

Dmitrii Torbunov, University of Minnesota torbu001@umn.edu

February 25, 2021

Introduction

- ► In this presentation, I will discuss development of the RNN neutrino energy estimator for the NOvA neutrino oscillation experiment.
- NOvA (NuMI Off-Axis ν_e Appearance) a long baseline accelerator based neutrino oscillation experiment.
- Plan of the talk:
 - Overview of the NOvA experiment.
 - Overview of the neutrino energy estimation at NOvA.
 - Development of the RNN energy estimator.
 - Other applications of the RNN architecture.

Dmitrii Torbunov 2/40

Neutrino Oscillation

- ▶ Three generations (flavors) of neutrinos are known: ν_e , ν_μ , ν_τ .
- ▶ It was discovered, that neutrinos change their flavor over time.
- Probability $P_{\nu_{\alpha} \to \nu_{\beta}}$ of neutrino changing its flavor is a periodic function of time phenomenon known as Neutrino Oscillation.
- ▶ By measuring neutrino oscillation probability $P_{\nu_{\alpha} \to \nu_{\beta}}$ we can get estimates of the fundamental parameters of the neutrino physics: Δm_{21}^2 , Δm_{32}^2 , θ_{12} , θ_{23} , θ_{13} , δ_{CP}

Dmitrii Torbunov 3/40

NOvA Overview

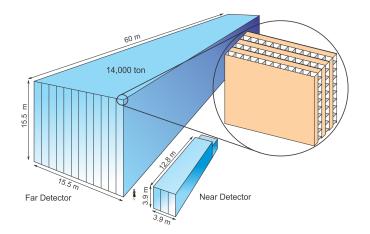
► NOvA is a long-baseline (810 km) accelerator based neutrino oscillation experiment.

 Studies NuMI muon (anti-) neutrino beam (700 kW) produced at Fermilab.

► NOvA detects neutrinos with two finely grained liquid scintillator detectors.

Dmitrii Torbunov 4/40

NOvA Detectors

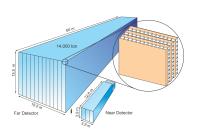


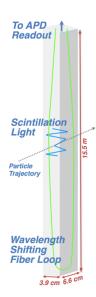
Near Detector ($L\sim 1\,\mathrm{km},\ M\sim 300\,\mathrm{ton}$) measures original beam. Far Detector ($L\sim 810\,\mathrm{km},\ M\sim 14\,\mathrm{kton}$) measures oscillated beam.

Dmitrii Torbunov 5/40

NOvA Detector Technology

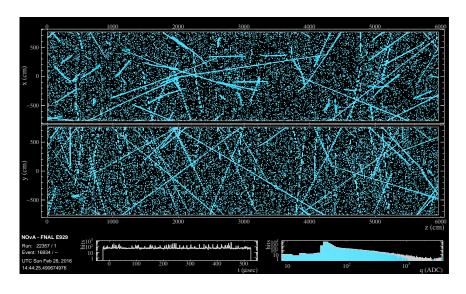
- Basic unit of a detector is a long plastic tube with liquid scintillator (cell).
- ► Light is collected by an optical fiber and detected by an APD.
- Cells are combined into planes. Planes are stacked in alternating directions.





Dmitrii Torbunov 6/40

Sample of Activity in the NOvA Far Detector



 $550\,\mu s$ window of Data

Dmitrii Torbunov 7/40

NOvA Physics

- NOvA performs two main analyses to constrain neutrino oscillation parameters:
 - 1. ν_{μ} Disappearance Analysis measuring $P_{\mu
 ightarrow \mu}$
 - 2. ν_e Appearance Analysis measuring $P_{\mu \to e}$

for neutrinos and antineutrinos.

- ▶ Sensitive to the atmospheric oscillation sector: Δm_{32}^2 , θ_{23} , δ_{CP} .
- NOvA could help resolve some unanswered qustions about neutrino physics:
 - Neutrino Mass Hierarchy question?
 - $\blacktriangleright \text{ Whether } \theta_{23} = \pi/4?$
 - ▶ Whether CP symmetry is violated in the neutrino sector?

Dmitrii Torbunov 8/40

u_{μ} Disappearance Analysis

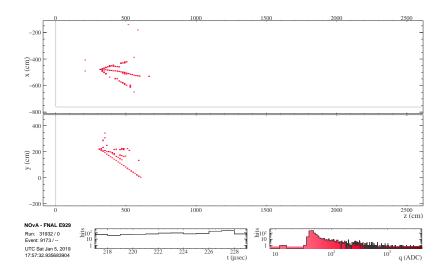
 ν_{μ} Disappearance Analysis is to estimate neutrino oscillation parameters $\{\Delta m_{32}^2, \theta_{23}\}$, by measuring survival probability of the ν_{μ} neutrinos at the Far Detector:

$$P_{\nu_{\mu} \to \nu_{\mu}} \left(E, L; \{ \Delta m_{32}^2, \theta_{23}, ... \} \right)$$

- In order to make inferences about neutrino oscillation parameters $\{\Delta m_{32}^2, \theta_{23}\}$, we need to identify ν_{μ} neutrinos and estimate their energies.
- ▶ The only reliable way to identify ν_{μ} is when it interacts via the Charged Current interaction with the detector: $\nu_{\mu} \rightarrow \mu + {\sf Had}$

Dmitrii Torbunov 9/40

Example of ν_{μ} Charged Current Event



Example of ν_{μ} CC event: $\nu_{\mu} \rightarrow \mu + \mathsf{Had}$

Dmitrii Torbunov 10/40

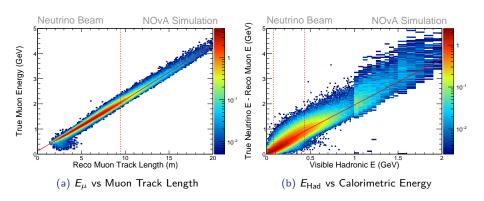
The Standard ν_{μ} Energy Estimator

- ▶ The Standard Energy Estimator of ν_{μ} CC events ($\nu_{\mu} \rightarrow \mu + \text{Had}$) exploits domain knowledge.
- lt works in three steps:
 - 1. Identify μ track and estimate E_{μ} from its track length.
 - 2. Estimate E_{Had} from the calorimetric energy of its hits.
 - 3. $E_{\nu_{\mu}} = E_{\mu} + E_{\text{Had}}$

It relies on the fact that μ tracks are relatively easy to identify, and that μ energy deposition rate dE/dx is well known.

Dmitrii Torbunov 11/40

The Standard ν_{μ} Energy Estimator, 2



Hadronic Energy component has large variance not explained by a total calorimetric energy

Dmitrii Torbunov 12/40

Can we estimate ν_{μ} energy better?

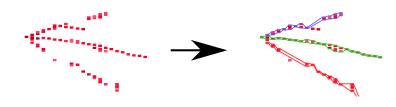
▶ The Standard ν_{μ} CC energy estimator has acceptable performance, since on average for selected events 2/3 of $E_{\nu_{\mu}}$ energy comes from E_{μ} and only 1/3 comes from $E_{\rm Had}$.

▶ How can we improve NOvA ν_{μ} CC energy estimator?

► At NOvA we can reconstruct clusters of hits (prongs), that correspond to individual particles at each event.

Dmitrii Torbunov 13/40

Particle Reconstruction



NOvA can reconstruct clusters of hits of individual particles:

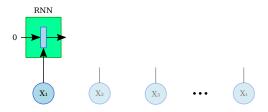
- Find number of hits and calorimetric energies
- Estimate dimensions and directions
- ► Predict type of the particle
- ▶ Estimate energies and momenta of particles

Dmitrii Torbunov 14/40

RNN Energy Estimator

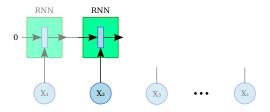
- We would like to use information from each particle as input to a new energy estimator.
- However, the number of particles (and prongs) varies between events.
- ► We needed a model that is capable of processing inputs of varying length.
- Recurrent Neural Networks are capable of handling inputs of varying lengths.

Dmitrii Torbunov 15/40



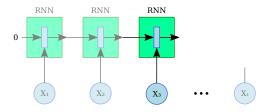
Recurrent Neural Network is a feed-forward neural network that is applied sequentially over inputs.

Dmitrii Torbunov 16/40



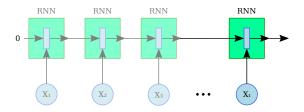
At each step network reads information from inputs and from the previous memory state, and outputs a new memory state.

Dmitrii Torbunov 17/40



At each step network reads information from inputs and from the previous memory state, and outputs a new memory state.

Dmitrii Torbunov 18/40



After all inputs have been processed, we extract output from the memory of the recurrent neural network.

Dmitrii Torbunov 19/40

RNN Energy Estimator. Data Formats

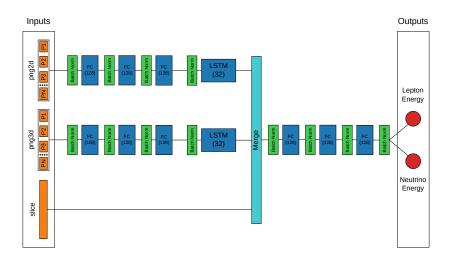
► Rapid prototyping of Neural Networks is possible in Python and requires GPU enabled machines.

NOvA dataset has size of about $\approx 1\,\text{TB}$ and cannot be easily accessed from Python nor transferred to a GPU cluster.

▶ I have designed an intermediate data format to extract relevant variables from NOvA ROOT files and transfer them to the GPU cluster, reducing dataset size down to $\approx 1\,\text{GB}$

Dmitrii Torbunov 20/40

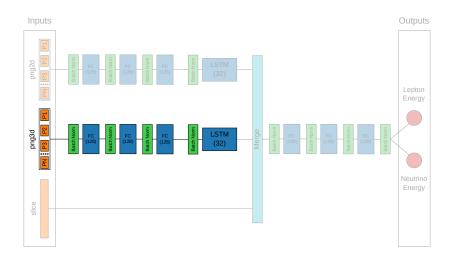
Architecture of the Recurrent Energy Estimator, Overview



Long Short-Term Memory Cells are used to process fully reconstructed prongs (3D) and partially reconstructed prongs (2D)

Dmitrii Torbunov 21/40

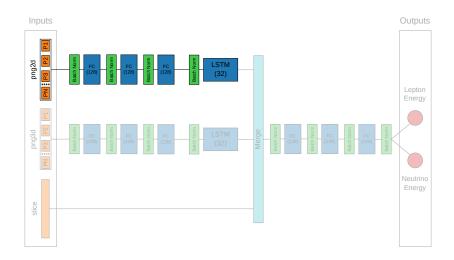
Architecture of the Recurrent Energy Estimator, 3D Prong



Information from fully reconstructed prongs (3D) is preprocessed through a set of Dense layers and fed to a LSTM Cell.

Dmitrii Torbunov 22/40

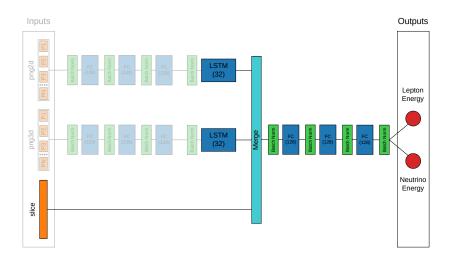
Architecture of the Recurrent Energy Estimator, 2D Prong



Information from partially reconstructed prongs (2D) is fed through another branch of Dense layers and LSTM Cell

Dmitrii Torbunov 23/40

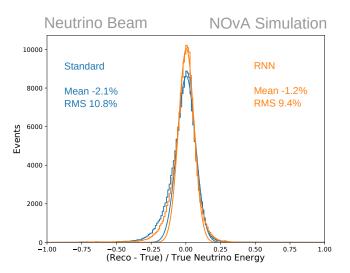
Architecture of the Recurrent Energy Estimator, Output



Outputs of LSTM Cells are combined with global information about event and used to predict μ and ν_{μ} energies.

Dmitrii Torbunov 24/40

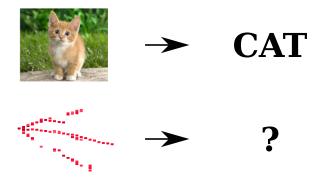
Performance of the Recurrent Energy Estimator



RNN energy estimator is better than the standard in terms of RMS 9.4% vs 10.8%.

Dmitrii Torbunov 25/40

Absense of Labeled Data and Monte Carlo Simulation



Humans cannot accurately identify event types, much less predict neutrino energies. We use Monte Carlo simulation to get labeled data.

Dmitrii Torbunov 26/40

Monte Carlo Simulation

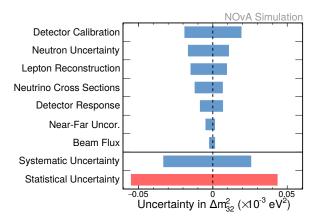
► We use Monte Carlo simulation of neutrino interactions in order to train Machine/Deep Learning algorithms.

Unfortunately, we do not have precise model of physical interactions, therefore results of this simulation are not fully accurate.

We use systematic uncertainties in order to estimate errors of Monte Carlo simulation.

Dmitrii Torbunov 27/40

Systematic Uncertainties



Precision of measurements of oscillation parameters is limited by systematic uncertainties.

Dmitrii Torbunov 28/40

Data Augmentation to Reduce Sensitivity to Systematic

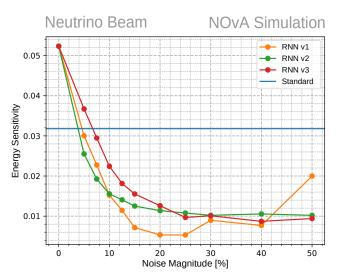
▶ We would like to reduce sensitivity of the RNN energy estimator to the Calibration systematic uncertainty.

It is possible to reduce sensitivity of an ML model to a systematic uncertainty of its inputs by adding random noise to the uncertain inputs.

▶ I have studied effects of addition of random noise in a way that emulates the effect of the Calibration systematic.

Dmitrii Torbunov 29/40

Sensitivity to the Calibration Systematic



RNN EE can be made 5 times less sensitive to the Calibration systematic than the Standard EE

Dmitrii Torbunov 30/40

Effects of Using the RNN Energy Estimator

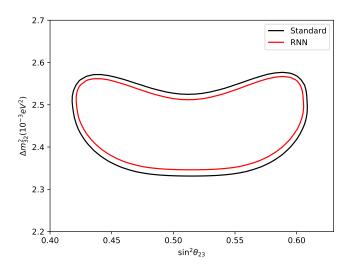
▶ New RNN energy estimator has 15% better energy reconstruction.

New RNN energy estimator is 5 times less sensitive to the major systematic uncertainty at NOvA.

▶ (Tentative Results) Improvement due to usage of the RNN EE is equivalent to 10 - 50% of additional data with the Standard EE.

Dmitrii Torbunov 31/40

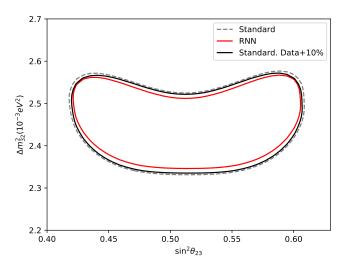
NOvA Oscillation Parameter Contours



(Tentative Results) NOvA 1σ contours for Δm_{32}^2 vs $\sin^2\theta_{23}$

Dmitrii Torbunov 32/40

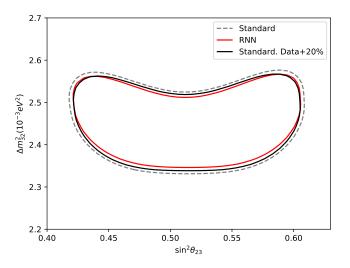
NOvA Oscillation Parameter Contours, With 10% more Data



(**Tentative Results**) With of 10% of extra data the Standard EE performance does not match performance of the RNN EE.

Dmitrii Torbunov 33/40

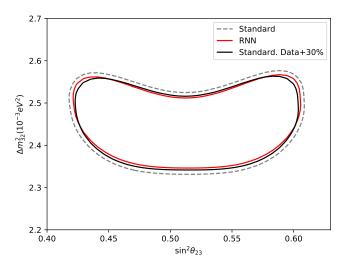
NOvA Oscillation Parameter Contours, With 20% more Data



(**Tentative Results**) With of 20% of extra data the Standard EE performance matches RNN for $\sin^2\theta_{23}$

Dmitrii Torbunov 34/40

NOvA Oscillation Parameter Contours, With 30% more Data



(**Tentative Results**) Even with 30% of extra data the Standard EE performance does not match RNN for Δm_{32}^2

Dmitrii Torbunov 35/40

Usage of RNN Architecture for Event Classification

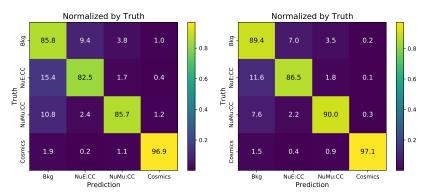
NOvA relies on a CNN classifier in order to predict neutrino interaction type.

However, CNNs are difficult to interpret from a physical point of view, and difficult to assess impact of systematic uncertainties on their output.

 NOvA needed an interpretable version of the event classifier to cross validate CNN classifier results.

Dmitrii Torbunov 36/40

Recall, RNN vs CNN



(a) RNN using only high-level information (b) CNN using all available information

37/40 Dmitrii Torbunov

Usage of RNN Architecture for Event Classification, 2

I have adapted the RNN energy estimator architecture to the task of event classification.

► The RNN event classifier has slightly lower performance (within 5%) compared to the CNN one, since it uses much less information as inputs.

▶ But the RNN classifier is easy to interpret and it is about 100 times faster to run.

Dmitrii Torbunov 38/40

Adoption of RNN Energy Estimator to Other Experiments

▶ I have developed an intermediate data format, data pipelines and the python package to train the RNN energy estimator, that are not specific to the NOvA experiment.

They can be used to easily develop an RNN energy estimator for other experiments.

Right now, I am porting the NOvA RNN EE to DUNE experiment, and it shows very promising results.

Dmitrii Torbunov 39/40

Conclusions

▶ I have developed an RNN energy estimator for the NOvA experiment, that has 15% better energy reconstruction and 5 times less sensitive to the major systematic uncertainty at NOvA.

► It may significantly improve performance of the NOvA experiment, pending further testing.

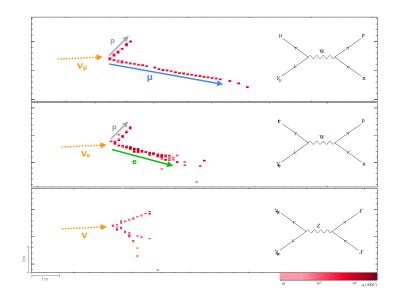
► The architecture of the RNN energy estimator can be easily adapted to the task of event classification, and ported to other experiments.

Dmitrii Torbunov 40/40

Backups

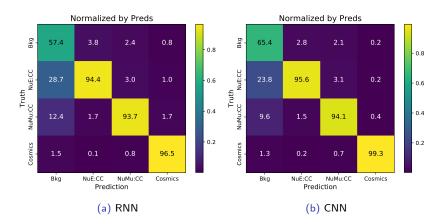
Dmitrii Torbunov 1/5

NOvA Event Topologies



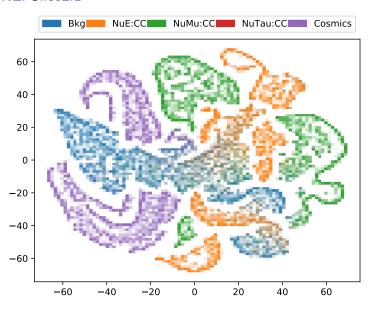
Dmitrii Torbunov 2/5

Precision. SliceLID vs CVN



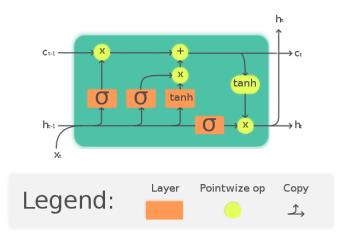
Dmitrii Torbunov 3/5

t-SNE. SliceLID



t-SNE embedding of SliceLID outputs

LSTM Neural Cell



Source: https://arxiv.org/abs/1808.05578

Dmitrii Torbunov 5/5